
Modern Git for Game Development
AAA Workflows on a Budget

Hey there and welcome to “Modern
Git for Game Development” – AAA
Workflows on a Budget

The goal of this talk is to teach small
to medium sized companies how to
do (most of) what the large
companies do, with regards to
Version Control and Continuous
Integration, at a fraction of the cost.

It’s me!

Indie Dev

Uni Lecturer

EA Melbourne

PlaySide

…Independent!

But first, a little about me – Vikram!

1. I started my games career as an
engine and tools programmer at a
small indie studio in Melbourne

2. Taught at a university for a couple
of years, getting better at
communication and transferring
knowledge

3. Worked on engine tech at EA for
about 5 years

4. Since then, I moved to PlaySide, I
was Senior Lead Engineer and 2IC of
Engineering, working on improving the
Engineering Department as a whole,
especially processes such as version
control

5. And now, I’m getting ready to start
my next role!

Overview

1. Set a Target

2. Contextualise

3. Path to Improvement

4. Rolling it out

For context, this talk is going to be
an anonymised amalgamation of
places that I’ve worked at and
projects I’ve worked on.

Now, given that the goal of the talk is
to teach how to achieve AAA
workflows on a budget

I’ve split this talk up into four parts:

1. Firstly, we’re going to have a look

at what the best in the world do and use
that to set a target for what we want to
achieve

2. Secondly, I’ll introduce a hypothetical
studio – a studio that is rapidly growing
and hasn’t settled on best practices yet –
it might sound familiar to places that
you’ve been, or currently are at!

3. Then, I’m going to tell a story of how
that studio improved its workflows -
achieving something that I think is quite
close to the target we set

4. And finally, I’m going to tell you what
I would do differently if I was to do it
again (including on my personal projects
at home)!

And before get stuck in, I’m going to
state that the scale that I’m talking
about is tried and tested at a team size
of 30-40 developers working on an
Unreal Engine game.

But with a few more tweaks that I’ll talk

about before the end, my aim is to at
least raise that by an order of
magnitude.

So hopefully you’re in the right room!
Let’s get started

Setting a Target
What does the infrastructure look like the best companies in the world?

So, what does version control look
like in the AAA sphere?

Huge Repositories

AAA companies have huge repos.

They regularly have many Terabytes
of data for single projects, and they
might all be stored in a single shared
repository.

It’s not impossible for a depot to get
to a Petabyte or larger.

And - these repos are globally
synchronised to allow for around the

clock development, so downtime can’t
occur

Because of the size of the repositories –
individual contributors need the ability to
pull only select elements to do their work

Binary File Management

These repos are full of binary files!

Naturally – game development deals
with these more than any other kind
of software engineering.

These files, by their nature, can’t be
merged.

To prevent work being lost, these
assets must be lockable – once
someone has checked out a file,
nobody else can edit it.

This is, of course, in addition to proper
asset breakdown and separation of
concerns.

Continuous Integration

Of course, all the best studios have
some form of Continuous Integration!

Each developer’s changes are pre-
integrated, tested, and validated at
the maximal frequency possible -
continuously

This can involve branching, isolating
changes through, for example,
feature toggles, merge automation,
detecting merge conflicts or test

failure, and finally, ensuring that all valid
changes are integrated – available for
other developers to build atop of

And then for all such integrated changes
to go into a release – via continuous
delivery, if not continuous deployment –
especially if you’re looking at a live
service title

Seamless Tooling

And finally, wherever possible,
studios integrate their tooling with
their source control.

You want to maximise the time that
each developer spends in their
creation software, as opposed to
their administration software – so
AAA studios ensure each individual
contributor has the information and
interactions they need within their
content creation software, whether

that’s in-engine or another DCC.

At the very least – you need to show
what files are locked by other users, and
to automatically lock files which the user
is attempting to edit.

Most AAA studios that I know of use
Perforce for Source Control.

If you look at Epic Games, they
develop Unreal Engine using Perforce
– and it shows! To get tools and
integrations such as Unreal Game
Sync, it is perforce only

And if you’re a small studio looking at
the cost of setting up perforce…
well… one thing to consider is that:

The AAA studios have entire teams
dedicated to DevOps!

Their job is to enable everything
we’ve just spoken about, and more

• These teams keep P4 servers
online and administrated 24/7

• They managing edge server de-
syncs,

• Failed build rollbacks,

• Supporting testing infrastructure,
building integrations and tooling, etc.

Even if you only need a local time zone
coverage, this can be quite expensive to
maintain, these people are specialists

But it’s something you can’t afford to
not have – once your company starts to
scale up!

And arguably, the return on investment
is so great, that it’s worth having even if
you’re a 2-person indie!

That’s a lofty goal!

I’d be remiss to neglect what’s
outside game development.

I’m only going to very briefly
mention DORA, Google’s Dev Ops
Research and Assessment program,
which you can check out at dora.dev

Almost everything that I’m talking
about today is just fragments from
the DORA Core Model, applied to
game development

And they have reams of research on
how this can benefit individuals' well-

being as well as organisational
performance!

Providing Context
Introducing “Tiny Turtle Studios”

Let’s talk about our hypothetical
game studio – before we swoop in
and fix things up.

Thanks to letsmakeagame.net for
their video game company name
generator – we’re going to call our
studio “Tiny Turtle”

Tiny Turtle Studios

•Several projects

•Each working differently

•Using git differently

•Some Jenkins setup

•A real scale up problem

Tiny Turtle Studios is scaling up!

It’s just signed a couple of lucrative
contracts and is scaling up its
workforce to meet those
requirements, as well as invest some
of that money into its own IP!

1. Right now, Tiny Turtle has a
handful of projects

Mostly mobile projects, some work
for hire, and starting work on its own
new IP – a AA PC game.

Most projects are small, but we’ll focus
on the PC game with around 30
developers.

2. Each project is set up differently to
suit its own needs

Mobile projects are using Unity, 3rd party
engines when doing work for hire, and
unreal engine for its flagship title.

They all have different processes and
pipelines!

3. …including version control!

There is no standard methodology –
although most of the projects are hosted
on an in-house git server.

Some are using push to trunk, some are
using feature branches, some are using
git-flow

4. And continuous integration is… in its
infancy

No Infrastructure-As-Code – no
continuous delivery, and release builds
are manually triggered.

5. These are classic growth issues.

At this point of your business
(Capability Maturity Model
Integration level 1 or 2), you must
drive standardisation

Hyper Lawnmower on the High Seas

•Cool custom tech

•Early Access

•Company’s largest project

•Struggling to deliver

Let’s talk about that flagship project!

1) Let’s call it “Hyper Lawnmower on
the High Seas” (once again, thanks to
letsmakeagame.net)

2) It’s an Unreal Engine title, and the
Tiny Turtle team is doing some very
cool things with it.

3) They’ve got some brilliant team
members who have twisted the

engine in ways it wasn’t designed – and
created something unique!

4) At this point, it’s in Early Access – and
generating a lot of praise!

5) This is the largest project the
company has ever tried, and it’s got the
team to match, about 30 developers
altogether, including over a dozen
engineers.

6) However, the team has promised a lot
of features on its roadmap, and its
struggling to deliver…

Let’s look at that…

HLHS – Development Issues

•Two major features in development

• Intermittent merges between two dev branches

•Releases cut, and then developed on for weeks

•Custom binary data format

•Engineers constantly breaking tools for Artists/Designers

As we join the team,

1. The Hyper Lawnmower team is
working on two major features. Let’s
call these features UGC (Custom
Maps) and Twitch Plays integration.

These features kept breaking each
other, so currently they are working
in two development lines.

2. They need to ensure they don’t

diverge too much, so they merge
between the two branches.

They usually merge from Twitch into
UGC, fix up any conflicts, and then
merge back.

Of course, the merge is painful, only
being done every few weeks, and often
issues are missed.

3. When preparing for a release, they
branch off of UGC, and submit any fixes
or final content changes into that branch.

The release takes weeks to finalise, and
when it’s finished there is another painful
merge – once into UGC and another into
Twitch.

And let’s make things a bit more
complicated – because of the cool
custom tech we mentioned before…

4. we’re going to use a custom data
format, with custom tooling, for the

custom maps feature.

5. And naturally, whenever you develop
your own tools, they tend to be a bit
more fragile.

Sadly, the constant merging between
UGC and Twitch Plays keeps breaking
the tooling in subtle ways that engineers
don’t immediately notice.

However, the artists are definitely
noticing.

Immediately, we need to fix this. Two
major features, being developed like
this, cannot function effectively.

So, let’s assume we have the ability to
focus the team on just one feature at a
time, in order to ship.

We’re going to get the team to work on
UGC first, even though both features
have been partially implemented so far.

That frees us up to look at the processes
being used.

HLHS – git Setup

•git-flow…ish

•Poor review culture

•Basic CI setup

•Not using LFS

•Completely the opposite of our target!

The way the Hyper Lawnmower team
is using git right now is pretty
rudimentary.

1. The branching strategy is a mess,
even after removing the dual-dev line
problem

Designers, artists, and some
engineers commit straight to trunk

Other engineers are using feature
branches, but they are often
developed for weeks before merging

The release branch is created in a git-
flow way, with releases being developed
against and hardened before going out

2. If a feature branch is used, it’s
merged through a pull request

But review approval is optional.

And large features are too hard to review
in detail, so reviewers often just rubber
stamp them.

3. There’s a basic CI setup which pushes
release builds to steam – but it’s
triggered manually

QA is currently reliant on a release
branch to be set up, and built, before
they get a testable build

4. And, arguably worst of all – the team
isn’t using git LFS – so the .git folder
history is growing massively!

5. So, suffice to say, this is all
completely the opposite of our target
workflow!

It’s no wonder that development is
grinding to a halt.

The Tiny Turtle Studios git Team

•Bring the Leads together, set a mission

•Research the current state git workflows

•Plan what new projects will look like

•But we need to test it practically, beforehand… Right?

So, if you’ve just joined this
company, you’re in a senior position,
you’re relatively new and have a
chance to make a difference, what
are you going to do?

Rather than just fixing one project,
let’s standardise.

At this point, you could consider
switching to Perforce – but let’s say
that Tiny Turtle’s budget is… a bit
constricted right now, and leadership
explicitly stated the desire to

minimise new costs.

1. Grab some of the experienced people
in the company who are achieving good
things on other projects, put them in a
room, and set a mission to standardise
the version control workflow across the
company.

2. But! Don’t just assume you know
what’s best. Do some research. Ask what
each team is doing, what are their pain
points – and then look outside of Tiny
Turtle, and even outside of Games, to
see what people are doing

3. Once you’ve gathered your
information, you can form a plan for
what an ideal workflow should look like –
create a standard, write up some
documentation, and make a template
repository with a dummy project in it,
with all of the git settings and pre-

commit hooks set up.

4. But of course, we should test this
before committing to it… right? So, let’s
test it on our largest project – which has
the most to gain – Hyper Lawnmower on
the High Seas!

Now, if you’ve been away from git for a
while, or don’t keep up to date with
modern git practices, you might be
interested to learn that

git-flow – the git workflow that was
previously the top dog, was no longer
king of the hill!

Even the original author of gitflow
has since reflected on it and said it’s
too complicated for how we need to
make software nowadays

 https://nvie.com/posts/a-successful-
git-branching-model/

Trunk-Based Development

Trunk-based development is a version control management practice where

developers merge small, frequent updates to a core “trunk” or main branch. It’s a

common practice among DevOps teams and part of the DevOps lifecycle since it

streamlines merging and integration phases.

In fact, trunk-based development is a required practice of CI/CD.

https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development

1. Instead, the modern thought in
the area is to use “Trunk Based
Development”.

2. This is a workflow that is used
extensively outside of the games
industry, which predominately uses
git in this way – including companies
such as Google, Facebook, and
Amazon – so we know that it is battle
tested and scales well

3. There are a few flavours of it, and

my personal preference for a team like
the Hyper Lawnmower one, the flavour
we’ll be discussing today, is called
“trunk-based development at scale”.

Of course, if you’re considering trunk-
based development, have a look at what
flavours are out there!

There’s a website that provides a great
primer on this methodology and what
differentiates good and bad
implementations at
trunkbaseddevelopment.com

So, given the state of Tiny Turtle
Studios, and Hyper Lawnmower on the
High Seas’ issues… how do we upgrade
an existing project, mid project, to use a
completely new workflow?

The Path to Improvement
An incremental journey

Well, there are some obvious pain
points - we clearly have a lot to
improve

The first step, of course, is identifying
potential solutions and getting
alignment with the wider team, as
we’ve done so far.

But then

The Path to Improvement

1. Git LFS

2. File Locking

3. Rebase-Centric workflow

4. Managing Change

5. Branching Strategy

The next steps, or at least the next
potential steps, of how one might go
about getting better, might look
something like this:

1. Firstly, I’m going to talk about one
of the most loved and hated features
of git for game development – Git
LFS

2. Then, I’m going to introduce git’s
“new” killer feature, file locking
(originally experimental in 2016,

released in 2020), and cover how it
works

3. But, of course, that itself will
introduce a few problems that force a
workflow change, so we’ll cover why and
how you can switch to a rebase model

4. And the moment you hear rebase, it’s
scares people, so we’ll talk about how to
manage that kind of change with your
team

5. And finally, we’ll review what kind of
branching strategy you end up with,
including a bunch of benefits to release
management

1. Git LFS – How it works

Let’s start with Git LFS, and why and
how it’s set up

Traditionally, git stores the state of
every single file in every single
commit, from the first commit in your
repository until the current HEAD.

For text files, like code, it’s just a set
of cumulative diffs – that works
great!

However, binary files don’t have diffs.
This causes git to store a copy of every
single version of the binary file.

On your local machine… ouch.

Git LFS is a system, whereby, instead
you store pointers of large files – moving
the contents of the large files into its
own storage on your git server – and
those pointers are dereferenced (aka
“smudged”) only for whatever large file
pointers you have in your current
working copy.

This used to be a somewhat manual
painful process, and a lot of people have
told me about how their team have run
into smudging issues in the past,
however in recent years, this has
improved greatly, especially with modern
git clients, and you shouldn’t have to
care about how git lfs works.

1. Git LFS - Migration

HOWEVER, if you have a large
project which is already using git but
not LFS…

You need to migrate your repository.
This is a headache.

That means going back to every
commit which edited a (now) binary
file and rewrite history, so that the
binary “diff” was instead a pointer to
LFS.

Of course, this re-writes your repo’s

history, so your whole team will need to
nuke and re-clone.

This process is a pain, and if you MUST
do it, there are guides online.

It’s better to avoid this, I strongly
recommend that you set up .gitattributes
properly at the start of the project.

There are a million and one templates
you can look up online as a base for your
projects in Unity, Unreal, C++, or
anything else.

You can also set up pre-commit hooks to
catch any files that are committed above
a given file size!

This can help catch any potential LFS-
able files that you missed in your
.gitattributes and prevent this headache
as well.

1. Git LFS - Scale

But in the end, if you have git lfs,
everyone’s local repository is now
down to a manageable size, and the
server can be the one place to handle
a larger scale.

I’ve seen this solution be self-hosted
on a relatively simple NAS and
handle a very large number of active
projects – over 20 – including
archival of several more, older
projects.

This includes a game repo and an art
source repo per project – with some art
source repos exceeding 1tb in active
size, with more in LFS storage.

As far as I know, all git hosting providers
support LFS with a reasonable limit, but
for larger games (or unreal engine
games), you’ll probably want to self-host
a git server using gitlab, or look into
azure devops (which has unlimited LFS
storage).

But ultimately, with git lfs, you should be
able to scale your git repository to as
large as you need!

The folks at Anchorpoint just published a
blog about this exact topic, where they
show repo speed with a 1tb demo repo.

(https://www.anchorpoint.app/blog/scali
ng-git-to-1tb-of-files-with-gitlab-and-
anchorpoint-using-git-lfs)

As a side note: I’ve been asked a few
times if teams should use submodules to
manage larger git repos. My current
thoughts are generally no.

Some duplication is usually a reasonable
price to pay to avoid the complexity
overhead.

2. File Locking – Why?

Okay, so let’s discuss File Locking!

As discussed before, Hyper
Lawnmower on the High Seas is now
focussing on developing their UGC
system to enable Custom Maps.

This, of course, heavily leans into
using the custom binary data format

As we’re shipping a few example
maps, it has a lot of contention
between our artists and designers
who are trying to do their job.

What is more, the custom data format
doesn’t have any way to create prefabs
or blueprints, or any other nice
collaboration features.

We can’t afford for conflicts to cause
work to get lost.

So, fundamentally, we need artists and
designers to know when it’s safe to work
on a particular map file, or when it’s not!

Right now, designers and artists are
using a google sheet, manually handled
by a producer, to know who is working
on which file and when.

This hurts the engineer inside me, and
I’m sure you feel the same, so let’s
introduce file locking to automate this!

2. File Locking – How it works

•Add the lockable attribute

•View locks: git lfs locks

•Check out: git lfs lock <file>

•Check in: git lfs unlock <file> [--force]

https://vikram.codes/git-file-locking

If you haven’t heard of git lfs file
locking, you’re not alone!

Hands up if you have heard about it
before this presentation?

Now, git lfs locking docs are sorely
lacking, so I’ve put some docs
together myself and put them up on
vikram.codes/git-file-locking

But the high-level, command line

focussed summary is this:

1) Firstly, you need to add the lockable
attribute to your .gitattributes, this tells
LFS which files we want to be lockable.

You can select only certain file types, or
folders. For Hyper Lawnmower let’s
enable this for our custom binary format
only.

From there, file locking is somewhat like
perforce – lockable files are readonly by
default!

And it only has 3 commands that you
need to know.

2) The first is to see who has what files
locked – using git lfs locks

3) The second is to acquire a lock,
setting the file to be editable on that
user’s machine, using git lfs lock <file>

The user works on the file as normal,

finishing with the file being merged or
integrated into the main development
line

4) And finally, you unlock the file, when
you’re done with your changes (of
course, if you have elevated privileges,
you can –force the unlock in case
someone accidentally left a file locked).

Sounds pretty great, right?

There is one big difference to perforce
though…

2. File Locking - Global

Git lfs file locks are global by file
path

This means, if you are using multiple
development lines, feature branches,
release branches, or any kind of
branching structure, a file can only
be edited on one branch at a time.

And the implications of that is that
you cannot merge a locked file
into any other branch.

So, if your git workflow includes using git
merge – as Hyper Lawnmower on the
High Seas does – you’ll quickly run into
problems.

Let’s say that we have an update to a
map file in the main branch, and we
want to get that change into our feature
branch – but another developer has
locked the map to edit it on their feature
branch… well, git won’t let us merge the
latest changes into our branch!

So now you can’t get the latest version
of a file onto a branch, if someone has
that file locked.

That’s a problem…

3. Rebase - Updating Feature Branches

So, we need to avoid merges… well,
fortunately, git has a model for this –
Rebase.

As an overly simplistic recap, rebase
creates new commits that replay the
history of one branch on top of
another branch.

So instead of updating feature
branches by creating a new merge
commit, like on the left, you can
“move” your feature branch commits

with a rebase, like on the right.

This means that whichever feature
branch you’re working on has the latest
changes that everyone else has made,
and you deal with any conflicts on your
end, just as before, you just need to use
a different command to do so – and
because we are not touching the files
which were updated in main (i.e. with a
merge commit) – we don’t run into the
file lock issue!

3. Rebase - Integrating into Trunk

Likewise, we need to ensure that
when we are integrating a feature
branch into the development line, we
use a similar mechanism.

Instead of merging a feature into
Main, we can rebase Main onto the
Feature, aka fast forward main

We get all the lovely rebase benefits
that git experts love to rant on
about: clean linear history, the ability
to reword or squash commits to clean

up history, a better ability to hunt down
issues using git bisect – but these are all
tangential and have been discussed by
git experts elsewhere – so we’re not
going into the advanced use cases and
benefits, we only need the basic rebase
to solve our problem with locks.

But many of you are likely wondering –
how on earth do we get our artists and
designers to do this?!!

Well, it involves the 3 Rs… Reduce,
Reuse, and Recycle

3. Rebase - Reduce

ttps://graphite.dev/blog/the-ideal-pr-is-50-lines-long

The first thing to do is reduce the
number of times we require an
integration (i.e. rebase) from the
user!

Ideally, we get the number of user-
initiated rebases to ZERO!

Which is completely plausible, and
something that most of designers
and artists should be able to achieve.

To do so, we have made a push for
short lived feature branches.

The longer a branch is alive, the more
likely there is a conflict or integration
issue, the more painful the integration.

We encourage that every single
developer uses a new feature branch for
each task, and each task should be
doable in roughly a single day.

1) For engineers, my guideline is that
each feature branch should contain
either around 50 lines of changes, or a
single unanimous refactor (no matter
how large).

This, therefore, reduces the amount of
rebases you are forced to do:

• If your branch is less than a day old,
you don’t need to update it to test the
latest changes

• And if it has no conflicts because of
file locking, you don’t need to resolve

any conflicts.

3. Rebase - Reuse

•Good GUI tooling

•Visual Documentation

•Helpdesk

The second situation is when you
must rebase.

You can’t avoid a conflict because
you’re working on something like
code, or a shared subtitle asset file.

Our goal is to make it as easy as
possible!

1) Of course, most importantly it is
all based on good GUI tooling

2) I highly recommend git-Fork – it’s an
excellent bit of software for a once-off
payment per seat, and I seriously think
the developer should charge more for
what they’re offering.

For rebase, Fork avoids using “theirs”
and “mine” labels, which is one of the
main causes of confusion, so conflicts
are easy enough to solve even as a less-
technical user!

3) You need very visual step-by-step
documentation, in an easily accessible
and bookmarked location

I recommend writing it in collaboration
with your less-technical end users

Then, this documentation can be reused
every single time this situation comes
up, until there’s no longer any fear.

If there are no conflicts in the rebase,
this is a process that only takes a couple
of clicks and is just done.

4) And, if there is a conflict, we need a
method to help users. I recommend a
helpdesk git channel in slack or teams.

Any developer can ask for help in the
channel, and git lovers the company
over can reply, going straight to a desk
or screensharing via zoom to solve the
problem.

So now we have a system for when a
feature branch needs to be rebased,
whether due to being stale or due to a
conflict, and a mechanism in place to
help less technical users resolve
conflicts.

Note for readers: Anchorpoint is also a
game-centric option, although they use
their own implementations for some

things instead of base git, but they also
include additional features your artists
may like.

3. Rebase - Recycle

And finally, for the integration with
main, I prefer using a fast-forward
history

(i.e. your branch must be rebased on
top of main before integrating)

If you do this as a manual process,
this can get really frustrating

Especially because game CI takes a
while, and, as we’re about to discuss,
CI should pass before a pull request
can be integrated

Rather than making it a manual process,
we use automation to recycle as many
build results as possible…

Okay, well, technically it’s not recycling,
but also reducing, but I really wanted to
make the 3 Rs work!

1) I’ve personally had experience with
using GitLab Merge Trains, which do
quite well, as well as the open-source
Marge Bot for GitLab.

I know that GitHub has Merge Queues or
a range of 3rd party options like
Graphite, and JetBrains The Space has
The Space Flow – so there’s a version of
this for everyone.

All the tool needs to do is handle the
rebase/integrate loop for currently
merge-able requests.

Specifically, the tool will heuristically

decide on one branch to rebase, wait for
CI, and integrate.

3. Rebase - Green Builds

Automatically maintain a repository of code that

always passes all the tests

-Graydon Hoare

Note! So far, I’ve been saying that CI
must pass, or a pull request will fail.

You should enable this in your git
host, and your tool should respect
this.

This lets us follow the “not rocket
science rule of software engineering”
by Graydon Hoare, creator of Rust:

1. Always maintain a repository of
code that always passes all the tests.

This means that the test pass after
integration – not “before a merge”.

By using the method I’ve described, our
automated tooling will:

• Selects one of the ready to merge pull
requests - i.e. the pull request have
been reviewed and approved

• Rebase the selected branch on top of
trunk, and wait for CI to run on the
integration of the feature and latest-
trunk

• Assuming it passes, fast-forward trunk
directly to the tip of the branch (and
optionally squash the feature)

Guaranteeing that all commits in trunk
pass your pre-merge CI tests.

You might have longer running tests
limited to be nightly only, but the more
you put into pre-merge the better.

Reader’s note: This can be either fast-
forward all commits, squash, or merge,
all work, it depends on your team’s
ability to write good commit messages.

3. Rebase – Merge Meisters

•Rotating responsibility

•Accountable for pull requests

•Monitor for issues

•Assist resolution

• Integrate
https://trunkbaseddevelopment.com/branch-for-release/#merge-meister-role

To keep things moving smoothly, I
recommend using the concept of a
“Merge Meister”

This is my version of a merge meister
– not exactly what the literature
suggests.

1) Specifically, I like to have a
rotating roster of Merge Meisters -
every day one junior and one senior
engineer are assigned

2) To be Accountable for all pull

requests moving smoothly.

Specifically, I set a KPI that all pull
requests must be looked at within one
hour.

If a code review is needed, the merge
meister can either do it themselves, or
assign it to another engineer.

3) If an issue does occur, like a CI failure
or failed code review, we should notify
the author.

This is typically automatic – a slack bot
or similar – and the merge meister pays
attention to ensure the author has
received the message.

The author can then rebase their feature
branch, fix the integration, and re-
submit the request.

4) Of course, merge meisters are then
able to help the author resolve the issue,
utilising the documentation and

helpdesk, or escalate it further if needed

5) And finally, the merge meister
ensures that the changes “ready to
integrate” by whatever heuristic our
automated tool uses, usually by
approving the request!

3. Rebase – Typical Task Flow

•Start a branch

•Work on it

•Submit for pull request

•Done!

And that’s it!

Most users, most of the time, simply:

1. Start a branch

2. Work on the task

3. Submit it

4. Take their hands off the wheel!

The merge meisters and tooling take
over from there.

Users only need to get involved if

there’s a conflict or a code review
request.

For a vast majority of tickets, artists and
designers never have to even think
about rebase.

So, how do we get the users to be
happy?

4. Managing Change

1. Acknowledge

2. Support

3. Document

4. Improve

5. Showcase

There are a million and one books
and articles on change management!

This is just what has worked for me,
and for teams that already used git.

If you are trying to sell a perforce-
using art & design team on git… it’s a
tricky one, you will have to sell
them, in advance, on what DevOps
means and why it helps them.

But, overall, once you start rolling
out a process change like this, it can

get spicy. I follow this loop:

1. Listen to what the developers have to
say

2. Support the developer through their
problem

3. Add to or update the documentation
to include the solution

4. Start working on a better way,
immediately, and loop that developer
in, and once they’re happy with the
solution…

5. Showcase the new benefits to all
developers! Close the loop from the
pain point that started this process.

Support must be easily accessible to all –
via helpdesk or DM’ing their favourite
engineer

Which, of course, means that all your
engineers who might help, need to
understand both git, and support

techniques!

4. Managing Change - Acknowledge

•Actively listen

•Empathise and confirm

• Identify root cause

As things change, you might be
fielding multiple complaints, but
it’s up to you, as the change
manager, to handle all of them
simultaneously.

1. Remember that the first, key
thing, to be doing is to listen. We’re
ultimately doing this to improve
developer lives, as well as product
delivery, so ensure that people feel
heard.

2. We do that through Empathy.
Understand the frustrations of the
developer and confirm your
understanding by speaking it back to
them.

3. Then, find the root cause. They might
start by explaining a solution they want,
rather than a problem they have. So,
ensure that you get to the problem.

4. Managing Change - Support

•Work through

•Work around, manually

The second thing, is to support your
team to resolve the issue.

1) If possible, the support person
walks them through the steps that
would have avoided the problem.

Either you have documentation, and
it was unclear

Or you don’t have documentation,
and you’ll need to right it

But either way, the support person

works through the problem with the user
and finds out what is unclear.

2) However, if it wasn’t as simple as a
user or documentation mistake, your
tools may be broken or missing
something!

This happens awfully frequently when
rolling out a new system

To resolve this, allow people to break the
process – but only in limited ways!

If you let the user use the “old way” of
doing things, you’ll struggle to get buy
in, so it’s important to push through!

Instead enable power-user workarounds
within the new system

For example, if the rebase management
bot isn’t working, rather than letting
someone merge things in the old way, I
would recommend stepping in and

manually taking care of it for the user.

4. Managing Change - Document

• Initial Visual Guides

•Git Presentation

•Technical Writing skills

• Concepts, Tasks, and

Troubleshooting

Next, let’s talk about
documentation’s role in the change
management process!

You could start the change in process
by building all the docs your users
would ever need.

But nobody would ever try and do
that… right? (guilty look)

Instead, focus on the core workflow.

1) I would recommend starting with

3 simple confluence pages, step by step
visual guides for:

• how to start a new task

• how to work on a task

• how to finish a task

2) Then, it really helps if your support
team has a solid understanding of git, I
would recommend making a short but
thorough visual presentation which you
can guide the engineers through.

I’ve previously built up a Miro
presentation to teach them how git
works, and why rebase solves the
problem with locks

You don’t need to teach a lot – but
having your engineers understand the
basics of git’s data model will help
greatly with the quality of support they
can offer the rest of your team!

3) In order to help us Improve the

process, the next step in change
management, each support person
needs some basic technical writing skills.

There are a lot of technical writing
guides online that you can lean on.

4) For example, the GitLab technical
writing pages talk about splitting up
documents by objective types – such as
teaching a concept, showing how to
complete a task, or troubleshooting.

Additionally, I would heartily recommend
that every single engineer completes
google’s short and free technical writing
course, as they say – every engineer is
also a writer!

4. Managing Change - Improve

•Add or Update Docs

•Developer Experience

So obviously, we need to improve the
process as a direct result of the
user’s feedback

1. The first part of that, is to add or
update any documentation relevant
to the user’s problem

Every time your support team helps a
user with the problem, they need to
reflect upon the docs.

Did the user get confused by them?
Fix it.

Is there something missing? Add it.

Once the docs are updated, get the user
to review the changes and ensure that
their confusion would not have occured

Over time this will turn your docs into a
comprehensive solution

2. Then, you want to see if there is any
further Developer Experience
improvements that you can do to resolve
the underlying issue

For example, artists and designers might
complain about “pull requests take too
long to merge”

If you dig deeper, you’ll realise this is
often about subsequent tasks

As a DX improvement, you can create a
dashboard that shows expected
integration time for the queue of pull
requests

4. Managing Change - Showcase

•Tool Stability

•Release Stability

•Fewer Known Defects

• Increased Velocity

And don’t forget – the whole point of
change is to improve quality – of
both the build but also the lives of
developers!

To close the change management
loop, you need to show off the
improvements you’ve consequently
made!

Let’s fast forward a couple of months,
after rolling out all these processes to
the Hyper Lawnmower team.

Now, every single commit in trunk
passes the (very tiny suite of) unit tests
– including validating the custom tooling
for the custom data format.

It’s possible that after a couple of
months of trying the new processes,
your designers or artists might get
frustrated.

They’ll maybe say something like: “I
understand that it’s good for the
engineers, but why do I have to deal
with branches and things?”

So, showcase what you’ve achieved:

1) Because pre-merge CI is enforced for
all developers, the tools that are needed
every single day are available every
single day.

There’s no more searching for the “last
known good” build, or warnings not to

update at the start of the day.

2) More stable feature development
processes leads to more stable releases

The last time I implemented this
workflow, the live crash rate was
reduced significantly with each new
release.

The product became more stable with
less effort!

3) Fewer defects get into trunk, so QA
will have less work and is able to spend
more time providing better details in
their bug tickets.

It helps to build up a bit of pride in the
quality of work as well – people want to
ship quality – they’re willing to accept a
little daily friction for a noticeable
improvement in quality!

4) Overall, this process leads to being

able to focus more and build up a faster
velocity of work getting completed

The Hyper Lawnmower team is smart.
They get it. There’s a friction in their
work week that no longer exists, they
used to suffer from an unstable build.

Just because the process is a little more
involved than before, doesn’t mean they
aren’t reaping a net benefit!

5. Branching Strategy - Questions

•What about larger or riskier changes?

•And what about releases?

Okay let’s wrap up the final set of
changes – we know that file locking
leads to some difficulties.

And we covered the immediate short-
term ramifications – making short
term feature branches the go-to
method

We like the fact that every single
commit in trunk is guaranteed to
pass all tests, which leads to
improvements in stability and all that
jazz.

But given that we can’t merge changes,
there are two big branching questions.

1. What about larger or riskier changes
like refactors? Do they work in short
lived feature branches?

2. And how does this all impact making
and hardening release branches?

5. Branching Strategy - Feature Flags

Okay, so the first answer is more of a
development method than a version
control strategy, feature flags!

If you don’t know what a feature flag
is, it’s merely a runtime or compile
time flag which can be queried to
alternate between code paths.

I’ll focus here on integrating feature
flags, for features that might take a
week or longer, with the branching
strategy we’ve introduced

Very simply, you want to use feature
flags to wrap features which are being
developed.

The first pull request that a developer
submits should very simply be the
creation of a new feature flag

Then, locally, they turn on the feature
flag and start working on incremental
tasks.

They merge in each part of the
completed system as they work on it –
even if the system as a whole isn’t
working yet

Remember, 50 lines of code of the
perfect pull request size!

And finally, once the feature is complete,
we may choose to change the feature
flag to turn the feature on by default.

But we’ll come back to when and how to
do that

There’s a swathe of benefits related to

the code review process.

You get additional, earlier, and faster
code reviews

Therefore, they’re more thorough than a
single review of a completed system

And they can help catch bad
architectural decisions before they get
baked in and you lose work to remake
something!

In Hyper Lawnmower’s case, what we
can do is wrap all the existing Twitch
Plays code behind a feature flag.

This flag remains off, by default, but for
any work that needs to consider impact
on the input or command system, or
anything relating to Twitch Plays, the
developer can manually test it.

Also, we can automatically test it in
nightly builds with the flag turned on to
make sure we’re not breaking the Twitch
Plays while working on UGC!

And in between releases, perhaps once a
week, we can ask QA to do a functional
pass over the Twitch Plays feature to
make sure all the prior work isn’t
breaking.

Note: feature flags can be compile-time
or runtime – if you do them compile time
you can use it to prevent packaging
assets you don’t want to ship yet – and if
you do them runtime you can use it for
live A/B testing.

Of course, use what’s most appropriate
for your game, and for your feature.

Note: you can also use “branch by
abstraction” – which is a similar enough
topic that I’m not going to cover it here.

5. Branching Strategy - Riskier Changes

Well, what if we’re working on
something that doesn’t work well
behind a feature flag?

What if it’s something that is large
and risky like a core API refactor?

1) The first thing to understand is
that, in general, what we are
attempting to do is “shift-left” our
testing and quality assurance, move
more testing earlier in development.

We want to enable as much testing

before the merge as possible to
achieve the “not rocket science” goal –
all commits in trunk being green.

So, let’s enable the Hyper Lawnmower
team to be able to do just that, even
with larger changes!

If a feature absolutely cannot go behind
a feature flag – then we allow for a
developer, or a pair of devs, to have a
longer-lived feature branch – in the old
style.

Obviously when the branch is about to
merge in, our already set up tooling will
catch any CI test failures.

However, for some changes, we know
that automated tests are unlikely to be
sufficient to catch all potential issues.

Bugs may come in edge-cases or are
otherwise not covered by regular CI.

We can solve this problem by allowing
our developers to map a git feature
branch onto a (hidden, beta) steam
branch through CI.

When they’re ready for additional
manual testing, they can request it from
QA

Because your long-lived git feature
branch is automatically built to a steam
branch by CI, your Functional QA then
have an easy way to do some targeted
testing.

And once QA signs off on the feature, we
merge it in!

With a lot more peace of mind that the
change is safe because we left-shifted
Functional QA.

5. Branching Strategy - Releases

•Code lock git branch

•Must fix git cherry-pick

•Verified git tag

•Also: build RC nightly!

trunk

Now, Hyper Lawnmower on the High
Seas is gearing up for its next early
access release.

Considering merges don’t work
anymore, how do we deal with
having a release branch now?

Fortunately for us trunk-based
development has an answer for us –
and it works out of the box with file
locking!

In fact, trunk-based development

proposes several possible solutions, and
the one I’m describing here is merely my
favourite

1. First, when we hit code lock for a
particular release and are sending it to
QA – we create a git branch in a release
folder.

The act of creating this branch triggers
our CI and sets up the steam branch for
our QA to start looking at.

2. Then, if any fixes are required before
a release can go out, we develop it using
our usual feature branch workflow on
top of trunk, and cherry pick the merge

3. Finally, once QA has approved a build,
we tag it with a git tag, which triggers
off the final steam upload to a staging
branch, which can then be scheduled to
publish by our release managers.

There are some great benefits to this!

Our release branches are smaller – we
cut them later in the cycle, and we no
longer develop fixes against the release
branch

So, our developer workflows are simpler
(they always merge into trunk)

And QA is easier (because we can verify
the fix works in trunk before cherry
picking to release)

And it also means we don’t have issues
with merging a release back into trunk!

However – compared to our older
method of branching and hardening
against the release (i.e. gitflow) – we
now branch much later into a release.

This means QA doesn’t get a release
candidate until much later – they don’t
have a few weeks of hardening – so let’s
flip how we think about RC’s on its head:

4. Build the candidate for the next

release every single night – even when
we are months away!

5. Branching Strategy - Flags & Versions

•Centralised Control

•Development Features

•Version Locked Features

•Multiple Nightly Builds

So now we have all the pieces – let’s
go back and look at feature flags to
add some sugar on top

1. One thing about Feature Flags that
I strongly recommend – is having
them all controlled from one location.

There are a lot of ways to achieve
this – you can use your Build.cs files
in Unreal Engine, or a 3rd party tool
like Unleash for almost any engine

2. My preferred starter feature flag is a
“development” feature flag, which is off
by default – and can be opted into by
individuals

These are the flags that are used for
longer running, or riskier features,
before they are ready to be turned into

3. “version locked feature flags” – a
feature flag that simply says “from this
version onwards, this flag is set”

This is automatically on for all builds
above a given version number – with all
developers always building the highest
version locally by default

This also give us the benefit of moving
the release of specific features to be a
business decision, not just a software
decision, as to when you release them.

Product Owners can play with the “set”
of completed features, and release them
incrementally at their own whims, based

on their user-readiness.

4. And to tie this into our releases – we
now enable multiple nightly builds. One
for the next patch version increment,
one for the next minor version
increment, and one for the next major
version increment.

This generally covers all possible
permutations of features being on and
off, and lets QA test builds well in
advance of a release

Shifting more and more testing “to the
left”.

The Path to Improvement

1. Git LFS

2. File Locking

3. Rebase-Centric workflow

4. Managing Change

5. Branching Strategy

Let’s recap the story of what we used
to help Hyper Lawnmower on the
High Seas get better.

1) Firstly, liberal usage of git lfs

2) Secondly, we enabled lfs file
locking for highly contentious and
unmergeable files

3) Thirdly, this forced us to go
towards a rebase centric workflow

4) Which, obviously, can be a bit of a

struggle to switchover to

5) And finally, the struggle eased off and
we started reaping lots of benefits when
we adjust our branching strategy to fully
utilise trunk-based development at scale

Especially focusing on smaller, daily,
feature branches

Rolling it out
Doing it better

Alright, now that we’ve talked about
the highly hypothetical rollout at Tiny
Turtle Studios, let’s take a step back.

I want to talk about things that I
would do differently, if I was doing
this again, rolling it out at another
studio, or on my own projects.

And if you are going to take this
home, I really hope that you do
better than I did!

Even though my previous
implementations were worth it, they

were more of a struggle than they
needed to be!

Costs to Consider

•Merge Automation Tooling

•Hardware and Administration

•Documentation and Training

•CI Costs

•Friction and overhead

Firstly, let’s talk costs – I did say we
were going to achieve AAA quality on
a budget!

1. The first and possibly most central
cost to consider is the merge queuing
or stacking tool.

Most of the available tools in this
area come under premium offerings
from git hosting providers

GitLab, GitHub, and Jetbrains the Space
all have an option that should work –
although I’ve only tested GitLab’s fast-
forward merge queues

Or an open-source alternative is Marge
Bot, which unfortunately doesn’t handle
file locking properly yet.

If someone wants to add that – reach
out and we can collaborate! It would be
great to enable this workflow for free!

Overall, if you compare the premium git
hosting providers costs, you’ll see that
it’s not cheap, but it is still “budget”
compared to Perforce.

I can’t share exact numbers here, but if
you already have a business relationship
with any of these companies, they’ll
happily lay out a costing appropriate for
your studio.

2. Hardware and Administration – overall
roughly the same cost whether you go

with self-hosted git or perforce – but if
you go with an online git provider you
may end up spending more over time
and having less control

3. Documentation and Training for the
team is something that takes time,
which is money, to develop.

If you try and do it up front, it’s really
expensive – but I’ve given you a
roadmap of how to do it cheaper!

4. CI Costs – this will be identical
between Perforce and git so I’ll skip over
it – you can use whatever system you
like with either

Although, I would strongly recommend
that you use infrastructure-as-code,
which most git hosting providers have a
solution for, if you don’t want a third
party one like TeamCity.

5. Friction and overhead – the day-to-
day friction of creating a branch and
managing pull requests.

Realistically, this is noticeable at the
start, but within a couple of months,
max, this should become negligible.

Regardless, as shown so far – I’m sure
you can see the benefits outweigh the
costs!

So, in the end… will this be cheaper than
Perforce?

Based on numbers I can’t share; the
answer is yes – even at a scale of
several hundred people.

For your studio? It’s up to you to do the
costings, but please reach out to me if
you need a hand with figuring out the
details!

As soon as possible

•Git Attributes

•pre-commit

• Infrastructure as Code (IaC)

•Pull request requirements

Things that I would recommend you
do as soon as possible:

1. Set up git attributes for git lfs and
locking as the very first commit in a
repo

2. pre-commit integrations

This can be file size checks to catch
un-LFSd files, commit message
validation, clang-tidy, or whatever
else you can get going

3. Then, ensure your CI is set up using
infrastructure as code

And ensure all of your engineers
understand the bare bones basics of how
it works

4. And lastly, enable your pull request
requirements

Approval requirements, CODEOWNERS
files, CI must pass, and the tooling we’ve
discussed

I would only ever start development
after setting up all of these, and as many
of the things I mention in this talk as
possible, but if you’re here you likely
already plan to.

Do Better

•Rollout Strategy

•Feature Flags

•Engine Integration

•pre-commit hooks

Things I want to do better next time:

1. I wish we rolled out the system in
a more cohesive way!

When I’ve done this in the past, it’s
been quite reactionary, dealing with
problems as they arose.

If I had a stronger vision from the
start, and got more buy in, then I
think change management would
have been a lot easier!

The aim of this talk is to give you all the
tools to do just that.

2. Feature Flags

I would like to use them more liberally in
our code – but also see if we can
integrate them better into asset
management!

3. Better engine integration

Both Unity and Unreal have git plugins.

The main Unreal git plugin I’d
recommend is by Project Borealis, which
includes a very good file locking
integration.

However, that the current state of Unity
git plugins isn’t ideal.

Fortunately, I know for fact it can take a
competent developer just a couple of
weeks to fix that – but it’s not yet open
sourced or easily available.

4. Finally, pre-commit hooks

This is another thing I think could be
open sourced for the good of the game
dev community – a good set of pre-
commit presets for Unreal and Unity.

In prior roles, I’ve added file size checks,
commit message validation, automated
code formatting, and some static
analysers, which help shift your quality
checks further to the left.

But I suspect there’s even more we can
do here that’s game specific – like
checking that textures are power-of-2 if
they’re being checked in, and things like
that.

An Eye to the Future

• Research and Development:

• git scalar and sparse checkout

• Alternative to UGS

• Tooling Needs to Improve:

• Batch to reduce CI thrashing

• marge-bot supporting locking

And finally, here are some of the
next steps.

1. I’m doing a bit of research, and
potentially development, into

2. In the past, Microsoft developed a
system called scalar, which was a
scaling wrapper to git.

However, almost everything from
scalar has now been merged into git

itself, and git has added a few features
as well.

Specifically, I want to look into are
shallow clone (skipping LFS files), partial
clone (skipping history), and sparse
checkout (checking out specific LFS
folders only)

If we can make this artist friendly, I
think this might be the last step to fully
replacing perforce!

Note: none of the git GUI programs
support this in its entirety. Only
Anchorpoint, as far as I’m aware,
supports some of this

(https://www.anchorpoint.app/blog/scali
ng-git-to-1tb-of-files-with-gitlab-and-
anchorpoint-using-git-lfs#sparse-
checkout)

3. Additionally, I want to figure out an
alternative solution to Unreal Game Sync
to sync custom engine binaries – maybe
by forking it to add git support over p4?

I know that ProjectBorealis actually has
a solution for this as well – PBSync – but
“official” support via UGS would be ideal.

4. And there a few things I think need to
improve in the ecosystems to make this
a lot easier to deal with at even larger
scales.

5. Tools like gitlab, github, etc. that
support this workflow don’t have a good
batching solution to reduce CI thrashing!
If you are merging multiple PRs at once,
you should be able to just run CI on the
combination of all of them, to get a
green light to merge all of them.

6. marge-bot HAS batching – but it
doesn’t support dealing with file locking
– it would be good if someone can fix
that for the opensource community!

I know that this system can work for a
single project with a team of 30-40, and
a repo of up to a terabyte in size.

With these additional features, I think we
can raise that by an order of magnitude.

Wrapping it up

1. Aim for the Stars

2. Tiny Turtle Studios

3. Hyper Lawnmower

4. Doing it again

So, to very briefly summarise what
we’ve covered.

1. If we’re going to use git, we’re
going to aim for the stars

This means attempting to achieve
everything that the biggest software
companies to in modern DevOps

But balancing it with everything that
our artists and designers need to
succeed.

2. Including the artists and designers at
the hypothetical Tiny Turtle studios.

I’m sure that most of us have worked in
studios not unlike Tiny Turtle.

3. Next, we dove into the nitty gritty
details of how we can take their flagship
IP and improve its processes.

This section should hopefully have given
you enough of a framework that you
could implement this yourself.

4. Finally, we covered what’s next – for
me, for this workflow, and hopefully for
you!

Bonus – git tricks

• rerere

•git rebase --update-refs

Now as a super quick bonus slide, a
few git power user commands or
config options to try out:

1. rerere - reuse recorded resolution –
helps if you need to rebase multiple times
– can be used as a command or a config

2. git rebase with update refs – lets
you rebase a set of stacked pull
requests at the same time

Get in touch

contact@vikram.codes

Check out the locks write up:

• vikram.codes/git-file-locking

Resources and References:

• trunkbaseddevelopment.com

• dora.dev

I’ve been Vikram, thank you all for
going with me on this journey

Feel free to get in touch, ask me
questions at any level of detail, or
even to get me to consult with
setting this up yourself!

I’ve put up a blog post on git file
locking, which you can check out on
my website

And if you’re only just hearing about
trunk-based development, or have seen
it only done badly, please check out
trunkbaseddevelopment.com

Likewise, for devops, I can’t speak highly
enough about DORA, the DevOps
Research and Assessment program by
Google – their information is excellent.

And with that, any questions?

